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THEORETICAL STUDY OF THE TRANSONIC LIFT OF A DOUBLE-WEDGE PROFILE WITH
) DETACHED BOW WAVE!?

By Wavrer G. VincentI and Creo B. WAGONBR

SUMMARY

A theoretical study s described of the aerodynamic character-
i8tics al small angle of attack of a thin, double-wedge profile in
the range of supersonic flight speed in which the bow wave 18
detached. The analysis is carried out within the framework of
the transonic (nonlinear) small-disturbance theory, and the
effects of angle of attack are regarded as a small perturbation on
the flow previously calculated at zero angle. The mized flow
about the front half of the profile is caleulated by relaxation
solution of a suitably defined boundary-value problem for the
transonic small-disturbance equation in the hodograph plane
(3. e., the Tricomi equation). The purely supersonic flow about
the rear half is found by an extension of the usual numerical
method of characteristics. Analytical resulis are also obtained,
within the framework of the same theory, for the range of speed
in which the bow wave 18 attached and the flow is completely
supersonic.

The caleulations provide, for vanishingly small angle of
altack, the following information as a function of the transonic
similarity parameter: (1) chordwise lift distribution, (2) Uft-
curve slope, and (3) position of center of lift. As in previous
studies, the aerodynamic characteristics of a profile of given
thickness ratio show little variation with free-stream Mach num-
ber as the Mach number passes through 1. As the Mach
number 18 increased to higher values, however, the lift-curve
slope rises to a pronounced maximum in the vicinity of shock
attachment and then declines. Correspondingly, the center of
lift moves forward toward the leading edge and then returns aft.

These findings are in marked contrast to the behavior of the drag’

coefficient at zero angle of attack, which was found in earler
work to decrease monotonically as the Mach number increased
above 1. At Mach numbers above that for shock atlachmens, the
results of the present calculations tend toward those given by
classical linear theory.

INTRODUCTION

The theoretical problem of the transonic flow over a thin,
double-wedge profile at zero angle of attack has been treated
in several papers in recent years. These papers have in com-
mon that they employ the simplifying concepts of the
transonic small-disturbance theory and utilize the hodograph
transformation to linearize the resulting mathematical prob-
lem. Following this approach, Guderley and Yoshihara
(ref. 1) began by solving the problem for a free-stream Mach
number of 1, using analytical methods for the mixed flow
over the front wedge and the method of characteristics for
the purely supersonic flow over the rear. Somewhat later,
the present authors, using a combination of relaxation
methods and the method of characteristics (ref. 2), extended
the results to free-stream Mach numbers greater than 1,
where a detached bow wave occurs ahead of the profile. At
about the same time, Cole (ref. 3) obtained an analytical
solution for the flow over the front wedge at subsonic flight
speeds, utilizing, in effect, the special assumption of a vertical
gonic line from the shoulder of the wedge. More recently,
Trilling (ref. 4) has been able to remove this special assump-
tion and, with the aid of less stringent approximations re-
garding the flow over the rear wedge, to extend the solution
for the subsonic case to include the complete profile. As a
result of these investigations, the problem of the double-
wedge profile at zero angle of attack may be regarded as
substantially solved within the limitations of the transonic
small-disturbance theory. The experimental studies of
Liepmann and Bryson (refs. 5 and 6) and Griffith (vef. 7)
indicate that the theoretical findings are in fundamental
agreement with the physical facts.

In a recent paper (ref. 8), Guderley and Yoshihara have
continued their investigations of the double-wedge profile at
Mach number 1 by considering the influence of a vanishingly
small angle of attack. The basic idea in this later work is to
regard the effects of angle of attack as a first-order perturba-
tion on the nonlinear flow previously calculated at zero angle.
This approach leads to a linear boundary-value problem in
both the physical and hodograph planes. The calculation for

1 Bupersodes NAOA TN 2832, ‘“Theoretical Study of the Transonto Lift of 8 Double-Wedge Profile with Detached Bow Wave” by Walter G, Vincent! and Oleo B. Wagoner, 1052, Portions
of this work were also reported at the VIIIth International Congress on Theoretical and Applisd Mechanics, Istanbul, Turkey, August 20-28, 1652,
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the front wedge is still carried out, however, in the hodograph
plane, since the basic procedures can then be taken over
directly from the previous work. By this means, Guderley
and Yoshihara obtain results for the lift-curve slope of the
profile at zero angle of attack and for the corresponding
distribution of lift along the chord.

The aim of the present paper is to extend the results for
the double wedge at angle of attack to the case of supersonic
flight with detached bow wave. The fundamental ideas of
Guderley and Yoshihara are followed in reducing the caleu-
lations for the front wedge to a perturbation problem in the
hodograph plane. The detailed formulation of the problem
is, however, necessarily different in the present case. The
boundary conditions for the problem appear in terms of the
results already obtained at zero lift (ref. 2), and the solution
is carried out by numerical methods which differ only slightly
from those devised for the earlier work. The lift on the rear
wedge is calculated by an extensioun of the method of charac-
teristics. The body of the paper is devoted to the detailed
formulation of the boundary-value problem in the hodograph
plane and to a discussion of the final results. Noteworthy
differences between the numerical procedures used in the
present work and those already described in reference 2 are
treated in appendices at the end of the report.

NOTATION
PRIMARY SYMBOLS
Ty critical speed (i. e., speed at which the speed of
flow and the speed of sound are equal)
b numerical coefficient
(See eqs. (39) and (40).)
¢ airfoil chord \
. . lift per unit span
¢ lift coefficient, 0
Cor moment coefficient for moments taken about
leading edge, moment pzr cl:mt span
c, pressure coefficient, 4 —gP 2
Iy integral defined by equation (45)
ks numerical constant (See eq. (10).)
M Mach number .
m slope of segment of Mach line in characteristics
net
? static pressure
Ap local lifting pressure (i.-e., difference between |

static pressures on upper and lower surfaces)

q dynamic pressure

t airfoil thickness

14 speed of flow

x, Y Cartesian coordinates .

XY generalized Cartesian coordinates
(See eq. (43).)

(%) chordwise position of center of lift

:
% slope of curve of lift coefficient versus true
am(

angle of attack evaluated at zero angle

slope of curve of moment coefficient versus true
angle of attack evaluated at zero angle

(&)
. da am(
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a normalized angle of attack; also denotes true
angle of attack when used in derivatives

such as &; ete.
da

8 absolute value of % at left-hand limit of lattice
v ratio of specific heats (7/5 for air)
A basic lattice interval
I'e function of  and ¢

{See eq. (A6).)
7,7 normalized speed of flow

(See eq. (1a).)

M1, M2 special values of 5
(See fig. 20.)
X normalized inclination of flow; # also denotes
true inclination of flow in equation (1b)
(See eq. (1b).)
0, normalized half-angle of wedge
£, transonic similarity parameter
(See eq. (13).)
p fluid density
¢ stream function
SYa incremental values of stream function
{See egs. (A9) and (Al1).)
SUBSCRIPTS
a,b,c points in characteristics net
(See fig. 19.)
A,B components of total stream function
(See eq. (39).)
o conditions in free stream
8 singular solution
(See eqs. (A6) and (A7).)
0,1,2, ete.  value at a prescribed lattice point
* conditions at critical speed
SUPERSCRIPTS
) quantities determined at zero angle of attack
Y derivative with respect to normalized angle of

attack evaluated at zero angle

BOUNDARY-VALUE PROBLEM IN HODOGRAPH PLANE
DESCRIPTION OF FLOW FIRLD
Figure 1 is & drawing of the idealized, inviscid flow which
may be expected about a wedge profile when the angle of
attack is sufficiently less than the semiapex angle of the wedge.
Figure 2 shows the corresponding hodograph representation

‘of the flow over the front wedge, which is the region of prime

theoretical concern. Except for the substitution of the
detached bow wave in place of the infinite free stream, these
representations follow the lines assumed by Guderley and
Yoshihara in reference 8. The corresponding drawings for
zero angle of attack, which are fundamental to the present
case, have been described in detail in reference 2.

In the present example, the path of the central streamline
in the physical and hodograph planes is briefly as follows:
The streamline leaves the bow wave in the physical plane
(or the shock polar in the hodograph plane) at point A, It
then proceeds with decreasing subsonic speed to a stagnation
point O on the underside of the profile. At O the streamline
branches. The lower branch runs downstream along the
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Shock wave
———+——Streamline
Sonic line

———————— Expansion (Mach
CompressionJlines

Fiaure 1.—Flow about ‘double-wedge profile at angle of attack.

lower surface of the profile with fixed inclination but in-
creasing speed. The sonic speed is reached at the shoulder
L, where the speed then increases discontinuously in accord
with the Prandtl-Meyer relations. The shoulder itself maps
in the hodograph onto the upgoing characteristic LM.
The upper branch of the central streamline proceeds from O
upstream along the surface of the profile. The inclination
here is again fixed by that of the surface, and the speed
increases to the sonic value at the leading edge J. At this
point the flow is characterized by another Prandtl-Meyer
expansion to supersonic speed.

Fiaure 2.—Flow about front wedge in hodograph plane.

The flow configuration. which should be assumed on the
upper surface near the leading edge is open to conjecture.
Since the geometrically available angle of turn will, for any
thin airfoil, be greater than the 130° permissible for expansion
to a vacuum, a region of separation is to be expected. If the
angle of attack is not too great, this region will probably
be closed, with the central streamline reattaching to the
upper surface a small distance behind the leading edge.
This reattachment will be followed by a compression of the
flow through a system of shock waves whose arrangement is
sketched only formally in the physical plane (and not at all
in the hodograph plane, where the correct representation
would probably lie on several sheets). The effects of the
flow near the leading edge will be mentioned later, but the
exact process will remain undefined. Whatever the details,
the speed on the upper surface will return to a subsonic
value at some point K just downstream of a terminating,

normal shock wave. From K the central streamline con-
tinues at fixed inclination downstream along the upper
surface, the speed increasing once more to the sonic value
at the shoulder B. At this point another expansion takes
place, similar to that which occurs at the corresponding
point on the lower surface. In this case the shoulder is
represented in the hodograph by the downgoing character-
istic BG.

The supersonic expansion. fan from the shoulder at B (and
similarly at L) is discussed in detail in reference 2. Suffice
it here to say that the supersonic flow field, of which the
expansion fan is the initial part, is separated into two regions
by the Mach line GE, which runs from the shoulder to the
sonic point on the bow wave. (This line was termed the
““separating” Mach line in reference 2.) The supersonic
flow in the region upstream of the Mach line GE is interde-
pendent with the subsonic field between the bow wave and
sonic line. To obtain a solution for the front wedge, a prob-
lem in transonic flow must therefore be solved for the
subsonic field and the interdependent portion of the super-
sonic expansion fan. Conditions in the supersonic flow
downstream of the Mach line GE have no influence upon
the subsonic field. The continuation of the flow beyond GE
can be accomplished by purely supersonic methods once the
solution of the transonic problem is known.

Aside from the obvious lack of symmetry in the present
case, the main difference between the flow here and that
previously studied at zero angle of attack is the existence in
the present problem of the localized supersonic region in the
vicinity of the nose. As pointed out, conditions in this
region are difficult to formulate. The problem has been
considered by Guderley and Yoshihara (ref. 8) in the course
of their work at Mach number 1. They find that, if the nose
region is disregarded in the hodograph and the boundary
condition along KB is fulfilled all the way in to O, then the
influence on. the lift of the resulting fictitious flow at the
mose is of somewhat higher than the second order in the
angle of attack. This suggests that the effects of the real
flow at the nose may be neglected in a first-order analysis
such as the present. In the work which follows, as in the
calculations of Guderley and Yoshihara, the supersonic
region at the leading edge will therefore be disregarded.

FORMULATION OF BOUNDARY-VALUE PROBLEM

As is reference 2, the analysis is based on the equations of
the transonic small-disturbance theory with the stream func-
tion ¢ as the dependent variable. If the effects of the flow
at the nose are ignored, the problem of the wedge at angle
of attack o is then readily formulated as a boundary-value
problem in the hodograph plane. To solve this problem for
vanishingly small «, it will be assumed that the solution ¥
at angle of attack can be expressed as the sum of the basic
solution ¢ previously obtained at zero angle plus a perturba-
tion term oy’, where ¥’ is a function which does not itself
involve a. By consideration of the difference between the
boundary-value problems for ¢ and ¥, & problem for the
perturbation function ¢’ can be formulated. The boundaries
for this problem turn out to be the same as those for the
problem at zero angle, and the boundary values themselves

appear in terms of ¥. The details of these matters will now
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be given. The reader who is interested only in the results
can proceed directly to the later section on Chordwise
Distribution of Lift.

Basic equations.—The basic equations will be taken in
the form given in reference 2, that is, in terms of small dis-
turbances from the critical speed a,.? The independent
variables are the normalized speed 7 and the normalized

inclination § as defined by the relations

i=(51) T (k)

Vv local speed of flow
6 local inclination of flow relative to direction of free
stream

V.  free-stream speed

By critical speed (i. e., speed at which the speed of flow
and the speed of sound are equal)

v ratio of specific heats

Use of these variables is equivalent to introducing the rules

for transonic similarity. In terms of the foregoing hodograph

variables, the differential equation for the stream function

¥ as given by the transonic small-disturbance theory is

Va—27Yn=0 @)

This is essentially the linear differential equation first studied
by Tricomi (ref. 11). It is elliptic for 7<C0 (subsonic speeds)
and hyperbolic for 7>0 (supersonic speeds).

The transformation from the hodograph to the physlcal
plane is governed by the differential relations

('Y+ 1) (Vm/a*— 1) -~ ~ 7
L [CDClee= Y Pogyatitiad  (ao)

dy=—— (adi-Hbidi)=— dy (3b)

where z=2(5,6) and y=y(7,0) are physical coordinates
(horizontal and vertical, respectively), corresponding to a
given velocity i,0. The symbol p, denotes the fluid density at
the critical speed ¢,. Within the approximation of the
transonic small-disturbance theory, the pressure coefficient
C,=(p—p.)/q. can be calculated from the relation

C,=—2 V-V

T

2=—2(V  fax—1)(H—1) 4)

The local Mach number is related to the speed of flow by the
equation .
M—-1_V
YL a o ! ®)

For simplicity of notation, the tilde will be omitted from

the symbols # and 8 in the remainder of the development.
It is to be understood, unless stated otherwise, that the quan-

tities 7 and 6 are themselves the normalized quantities
defined by equations (1).

Problem at zero angle of attack—When the angle of
attack is zero, the localized region of supersonic flow at the
leading edge disappears from figure 1, and the flow field
becomes symmetrical about the chord line. The correspond-
ing boundary-value problem in the 7,0 plane has been set
forth in reference 2. It is restated in figure 3, where both
the upper and lower halves of the flow field are now included.
In this representation, the surfaces of the wedge appear as
the semi-infinite horizontal lines OB and OL, and the sub-
sonic portion of the shock polar appears as the curve NAE.

8
£ . const. oq%(-q,ew)d"l |
0 2 o BY ow
¥ (7,6w)=0 +8
- 1
(0) k — =0———7]
V70,0 +hef, <o 55
E |
I-l-
T, %3y /77 fr 0= . ‘
_{W”O
for p—-o
{G,6,)
708 ks TOE) oo
’ -fm 8-, T
- $(17’_0")=0 . '-0(
0=— C— N
%= const. o-r;ng('r]. B )dq

FiaurB 3.—Boundary-value problem at zero angle of attack in 7,0
plane.

If the stream function for zero angle of attack is denoted

by y_l;=$(n,0), the differential equation to be satisfied here is
given by equation (2) as

l,.l-/'"—217.l/-/oe=0 (6)

The requirement that the flow shall be tangent to the surfaces
of the wedge provides the boundary conditions

¥(n,+6,)=0 for n<0 (7)

where 6,, denotes the normalized half-angle at the leading
edge. Thestagnation point at the leading edge is represented
in the present theory by the condition that

- ¥=0  for go— o, —0,<0=0, @®

Along the shock polar NAE, the relations for an oblique
shock wave require that

1—]—717 (——— _

’
3 The theory could equally well be formulated in terms of disturbances from the free-stream speed Vo, (see, e. g., refs. 9 and 10). For a discussion of the relationship between this latier

formulation and that used in the present paper, see reference 10.
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for
f=2(1—n) Y1+, —1=54=0

Along the sonic line, boundary conditions are prescribed
which represent the influence exerted on the subsonic field
by the interdependent portion of the supersonic expansion
fans, On the basis of the procedures given in reference 2,
this influence can be represented completely by the require-
ment that

¥ (0, 6)

s =0 (10)

7, (0, 6)+Fs f; T

where the upper signs apply for 1 <6 =<6, and the lower signs
for —0,<6=—1. The constant k, which appears here is
given by

AL

k=377 a3)

=~(.3429

where I'(1/3) is the gamma function of the argument 1/3.
The use of the relations (10) as boundary conditions along
the sonic line reduces the transonic problem of the flow over
the front wedge to a purely elliptic problem in the hodograph
plane.

In addition to the foregoing conditions, a further condition
is necessary to assure that the solution for ¢ will give the
proper scale when transformed to the physical plane. This
is furnished, for example, by the following expression for the
half-chord of the profile, found by integrating equation (3a)
over either OB or OL: .

pz* [<v+1> G;o/a*—l)]"’ f_"mnza (60 dn (11)

If the chord of the profile is given, this condition, together
with the previous conditions (7) through (10), is sufficient to
determine s udique solution to the problem.

It is obvious from the nature of the boundary-value prob-
lem (and also from considerations of symmetry in'the phy-
sical plane) that the solution for ¥ must be antisymmetric
with respect to 6. The problem can be simplified, there-
fore, by discarding the lower half of the hodograph and
replacing it by the condition

¥(n, 0)=0 for 9= —1 (12)

The resulting problem is readily solved with numerical
methods by assuming an arbitrary value of ¢ at some point
(as, e. g., point L), solving for ¥ in the upper half of the
hodograph subject to the conditions (7), (8), (9), (10), and
(12), and then adjusting the solution to satisfy condition (11).

It is apparent from the boundary conditions that the
solution of the foregoing problem will depend on the value
of the parameter 8, which defines the position of the upper
and lower boundaries in the hodograph. This parameter is

related to the more familiar transonic similarity parameter
£, by the relation
Mi—1 s "
ST D) MG 6.7 as)

where ¢/¢ is the thickness ratio of the complete double-wedge
profile.? In reference 2 the solution of the foregoing problem
has been carried out for four values of 8,,.

Problem at angle of attack,—If the supersonic region at the
leading edge is ignored, the bounda.ry—value problem for
the wedge at angle of attack appears in the 7,8 plane as
shown in figure 4. The primary difference between this and
the previous figure is that the lines OB and OL, which repre- -
sent the surfaces of the wedge, have each been displaced
downward by an amount «, where « is the angle of attack
normalized in the same manner as the other angles of inclina-
tion (cf. eq. (1b) ).

r——i-consf -qw (n8,-aa)dn

41(17,9 aa) 0
{0t sz rﬁ%m“' T
4 E ]
|+7 1—
ﬂ 3+5q ‘P "0
A 1
- >17
-0
“or n—-
Ng-1
¥,(0,6a)+, .éa'%sﬁa) dg=0- _/T
—————————————————————— —=1-8,
Y(n-6,-a;0)=0
- T 8,a
c
—z-oonst_[:;r;\.lb(n,-ew—a;a) dn

Fraure 4.—Boundary-value problem at angle of attack in 5,8 plane.

The stream function at angle of attack will be denoted
here by ¥=v(2,0;c), the latter notation being used to indi-
cate the dependence of i upon the parameter «. The

function ¢ must satisfy the differential equation (2), which

is now written.

Yeu—2mpes=0 (14)

The boundary conditions at the surface of the wedge now
require that

¥(n,£0,—a;0)=0 for =0 (15)
while the condition at the leading edge becomes
¢v—0 for 9>— o, —0,—a<S050,—a (18)

3 Throughout the present report, the expressions for the transonic simflarity variables have been altered from those used in the eariler account of this work (seo footnote 1) by replacing the
qusantity (v4-1) wherever It appearsin these variables by the product (y41)M 3. This procedure is suggested by the derivation of the similarity rules given by Busemann in reference 8. It
has been shown by Sprelter (refs. 10 and 12) in several specific examples to improve the accuracy of the small-disturbance theory 83 compared both with experiment and with exact theory.

4 In reference 8, Guderley and Yoshfhara find it convenient to obtafn the angle of attack by holding the profils fixed and changing the inclination of the fres stream. This procedurs, it
applied in the present case, would requirs the eventual calcalation of the sscond derivativesof § on the shock polar. The present procedure, which holds the free stream fixed and changes the
attitude of the profile, requires the caleulation of only a first derivative of ¥ at the surface of the wedge. Since the sccuracy of numerical differentiation decreases with increasing arder of the-

derlvative, the present appreach 18 to be preferred in & numerical analysis.
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The shock polar NATE is unaltered from the previous prob-
lem, and the condition on this boundary has the same form
as before. The conditions along the segments BE and LN
of the sonic line are now

1100(0 01) a) d31=0

TEG—0)T an

AT
where the lower limit of the integral has been changed in
accord with the displacement of the points B and I.. The
upper signs in equation (17) now apply for 1=560=<6.,—«
and the lower signs for —0,—a=<6<—1. An expression
. for the half-chord of the profile can be found again by inte-
grating equation (3a) over the line OB or OL, which gives

[(7+ DV o/ax— 1)]"2

me(n, £ 0u—a;0)dn  (18)

2 Pxly
If the chord of the airfoil is specified—say the same as af
zero angle of attack—then the foregoing conditions are
sufficient to determine a solution. No simplification based
on symmetry considerations is possible in the present case.

Perturbation problem.—The problem of the preceding
section could conceivably be solved by numerical methods—
though with great labor—for arbitrary values of «. Efforts
in this direction would hardly be justified, however, insview
of the fundamental omission of the localized supersonic
flow at the leading edge. It is more reasonable to examine
the problem for vanishingly small «, where this ommission
is valid and where’ there is hope that the amount of labor
might be reduced.

To proceed along these lines, it is assumed that ¥ (»,8;c)
may be expanded in a power series of the form

‘P(’ba ;a) =¢(ﬂ:0;0) +a ‘l’a(ﬂ:e;o) +0(d’)

where, for present purposes, only terms to order « need be
retained. The first term on the right represents the solution
at =0 and is thus identical with the function ¥(z,8) pre-
viously introduced. The second term will be sbbreviated
by means of the notation ¢/(%,0)=v.(9,8;0). If terms of
0(c?) are discarded, the expression for ¥ can then be written

V(n,0:0)=¥(n,0)+ ¥ (2,6) (19)

By comparison of the previous boundary-value problems

for ¢ and ¢, a problem for the perturbation function v,-

will now be formulated.

The differential equation for ¢’ follows at once from
the differential equations (6) and (14) and the substitution
(19). It is obviously of the same form as the previous
equations, that is,

V'ea—21 ¢ 5=0 (20)

The boundary conditions appropriate to the surface of
the wedge are established as follows: The boundary condi-
tion (15) for y is first rewritten, with the aid of the substitu-
tion (19), in the form

V(n,+0s~a)+a ¢ (1,+0,—a)=0 (21)

. By expanding in Taylor’s seties about the lines §=+6,, the
functions ¥ and ¥’ can be written
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Y(n, £ 0,— ) =¥(n,£60,) —oW(n,+0,) +0(a®  (220)

¥ (0, £05— )=/ (n,£00) —o/o(7,10,)+0(c?)  (22b)

If these expansions are substituted into equation (21) and
¥(n,+0,,) set equal to zero in accord with the boundary con-
dition (7), one obtains finally for vanishingly small «

¥ (n, 2£6,,) =s(n, :0,,) for .50 (23)

This is the boundary condition for ¥’ appropriate to the
surface of the profile. It will be noted that the condition is
applied in the hodograph at the original, undisplaced loca-
tion of the surface (i. e., 0= +6,). The condition depends for
its application on a knowledge of the basic solution .

The boundary condition for ¢’ at the leading edge follows
directly from the conditions (8) and (16). It is the same as
the corresponding condition for ¥, thatis,

¥ —0 for >— ©,—0,5050, (24)

As was indicated, the functions ¥ and ¥ both satisfy the

same linear; homogeneous boundary condition on the shock

polar. It follows, as in the case of the differential equation,

that the condition for ¢ on the polar is again the same, that
is, ‘

VR TFnve=0 (25)

=LA —n) 1+, —1=5950

The treatment of the boundary condition along the sonic
line is complicated by the fact that the parameter o appears
in the condition (17) as a term in the lower limit of the inte-
gral. For simplicity, the details will be confined here to the
upper segment BE of the sonic line. For this segment,
condition (17) becomes, after substitution from:equation (19),

for

BO0+ar 00t [ 2O 4oy

ok ai—azb!a_:—(%)_z/% do,=0 (26)

applicable for 1 £6=<8,—a. To simplify this equation, the

first integral is rewritten
© (0,60 ¥5(0,61) oe=e Jy(0,0)
J; dn= | o [ R e

v—a (01_ )2I3 Ow

It can be shown from Guderley’s analysis of flow at a convex
corner (ref. 13) that, for vanishingly small values of (9,~—8),
the variation of ¢ along the sonic line must be of the form

¥(0,0)=0(8,—0)*/2 (28)

where C is a constant for any given value of 6,. Differen-

tiating this relation, one obtains
¥o(0,01) ~ (B.— 1)

Substitution of this result into the second integral of equa-
tion (27) yields the fact that this integral must be propor-
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tional to a*®, The first integral in equation (26) can thus
be written

O Y(0,0) Lo [0 $(0.0)
= I T SR

o &

The second integral of equation (26) can be treated similarly
by first rewriting it as

o '10,0(0)01) _ ¢ ‘11’,9(0701) _ et 1!”0(0,01)
J;w—a (01""0)2/3 do,= J;,, (01—'0)2; 8 by b (01_.9)2/3 dby (30)

To deduce the variation of ¢’ for vanishingly small (6,—8),
it is first noted that a result similar to equation (28) must
also hold for the variation of y relative to the displaced
location of the shoulder, that is,

¥(0,6)=C(0p—a—0)*?

The quantity C=C(a) is a differentiable function of «

which reduces to C when a=0. Since « will eventually be
made less than any assignable value of (8,—86), this expres-
sion’ may be expanded in the form

2(0,0)=C(6,—0)"3 [1-% g—i—e+0(a?)] (31)
Now it follows from the definition of ¢/ that

e 9(0,0)—%(0,6)
¥/(0,0)=lim ===

a

Substitution from equations (28) and (31) thus gives for
the variation of ¢/ in the vicinity of the shoulder

v0o=tim [ =9 00— C0~0/"+0(o)
a—H) a
or
PH00)=C"0u—0)*—3 OO~ (32

where ¢'=C,(0).
(0.,——0)

This means that for vanishingly small

" ¥/6(0,61) ~ (6,— ;) ~**
On the basis of this result equation (30) can be written

’(0,8 ¢ (0,0,
[0 L0 qo- [ F OB a0 @

If equations (29) and (33) are substituted into equation (26)
and the boundary condition (10) is taken into account, one
then obtains for vanishingly small «

’ 0 ¥o(0,61) 2 _
lll,,(o,ﬂ)—l-kz J;' (61_6)2/3 d01_0 (34)
where 1<0<6, The boundary condition for ¥’ along the
upper segment of the sonic line is thus the same as the con-
dition for ¥. The same result can be shown to hold along
the lower segment.

It remains to impose the condition that the chord of the
airfoil must remain unaltered during change in angle of
attack. To express this condition in terms of ¢/, equation
(19) is first substituted into equation (18) to obtain

0 -
[* st to—artavinto—aldn @9
As in the treatment of the boundary counditions along the
upper and lower boundaries, Taylor’s expansion gives

Yo, 8.,— ) ="i(n, £0.)—cdos(n, £60.)1+0(c®)  (36a)
Vo(n, 20— )=V"o(n, £0)— ' ss(n, £6,)1+0(c®) (36b)

It can be inferred directly from the boundary-value problem
for ¥ that ¥ss(n, -0,)=0, so that the term involving this
quantity may be dropped from equation (36a). Substitution
of equations (36) into equation (35) and application of the
previous expression (11) leads, for vanishingly small @, to the
condition that -

_f_om 1¥o(1,3:0.) dn="0 @37

The boundary conditions (23), (24), (25), (34), and (37) are
sufficient to determine the solution for ¥’ in the hodograph.
As with ¥, the boundary-value problem for ¥’ can be
simplified from considerations of symmetry. Since ¥ is
antisymmetric with respect to 6, the nonhomogeneous
boundary condition (23) which is imposed on ¢’ along the
upper and lower boundaries must be symmetric in this
variable. The remaining conditions, which are all homo-
geneous, are also symmetric. It follows that ¢’ itself must
be 8 symmetric function of §.5° The problem can therefore
be simplified by agein eliminating the lower half of the
hodograph and substituting in this case the condition that

V(n,0)=0for n=—1 (38)

The problem which is finally to be solved is thus as sum-
marized in figure 5. The boundaries for this problem are

8
]
' [mm}é‘ (n,8,)dn=0 B
0= — [
vy |
1(0,0)+k f ? 405) g0 I
KRV TEOLZ M N
_ {4"-*0 :
for =@ 147 E]
V-5t 5,;/@ Y0~
¥'=0 .
0~ £ _lA —~1

Figure 5.—Perturbation problem in 7,8 plane.

s This result can also be argued direotly from considerations in the physicel plane. It is necessary to make two observations as follows: (1) Since the profile 1tself 1s symmetric about the
chord lng, the flow fleld at 8 negative angla of attack must be the inverted image of the flow field at an equal positive angle. (2) To be consistent with the basie perturbation assumption, it
must be presumed that sll changes in the flow fleld are smooth functions of angle of attack at a=0. These statements taken together imply that the vertical distance between any two points
of equal » and corresponding positive and negative d is, toa first order, unaffected by angle of attack. It follows that, for sufficiently small «, the increments in @ and ¢ between the two points
nro equal and hence, on the basis of equation (19), that the value of ¥’ at the two points i3 the same.
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identical with those used to obtain y. The boundary con-
ditions are also identical insofar as the shock polar and sonic
line are concerned. The only differences between the two
problems are in the conditions imposed along the boundaries
OB and OA. As was the case with ¥, the solution here must
be a function of 6,

Because of the nature of the integral cond_ltlon along the
upper boundary OB, a direct solution for ¢’ is not feasible by
numerical methods. To obtain a solution, therefore, the
problem is broken down into two sub31d1ary problems by
means of the substitution

=y 4 1+0¢'s (39)

where 4 is a constant whose value is to be determined.
Boundary-value problems for y’4 and ¢’s are-then defined
a8 shown in figure 6. In both problems the integral condi-

B O—e B
=0 Tad !
= | B
00— ‘P ‘PEEiO-—\
l F
C B l
Problem for \;v

Y

Problem for \PB
Fraure 6.—Bubsidiary perturbation problems.

tion along the upper boundary OB is ignored for the time
being, and an arbitrary condition is introduced instead at
the point E. In the problem for y’4, only the nonhomoge-
neous condition (23) is imposed at the upper boundary, and
the condition at E is the homogeneous one that ¢/ ,=0.
In the problem for y'5, the homogeneous condition ¥’'5=0 is
imposed along OB, and the condition at E is that ¢'5 has an
arbitrary value ¢’5,.7#0. The conditions at the remaining
boundaries are the same as in figure 5 and are therefore not
repeated here. It is apparent that a superposition of ¥/,
and y’p will constitute a solution of the original problem pro-
vided the value of b is adjusted so that the integral condition
(37) is satisfied on the upper boundary. The necessary
equation for b is found by substituting the expression (39)
into condition (37) and is

f Wag(1,0.) dn
f W ay(1,0u) dn

(40)

Relations for quantities in physical plane.—To complete
the fundamental analysis, relations must be established
between ¢’ and the relevant quantities in the physical plane.
Let £=3%(y, 0) and §=4(n,0) denote the coordinates at which
a given velocity 7,6 is found in the physical plane when the
profile is at zero angle of attack. As shown in reference 2
(pp. 22-23), the transformation equations (8), when applied
to the case of zero angle of attack (and written in the present
notation), can be put in the generalized dimensionless form &

§ Beo footnote 3.

d ®=4—%— (@mPdn+ydb) (41a)
[+ DM d @gzif_})"s Fodn13 edo>=(2i;2“’ i

_ (41b)
where I, represents the integral

jw=fjm 77117’0(77:0:0) dn (42)

By taking the origin of the physical coordinates at the lead-
ing edge and introducing the notation X=%/¢ and Y=
[(r+-1D)MZE (t/c)]'3(/c), equations (41) can be integrated to
give

XK= [ @audnt-B) (43
Too—22 g (43b)

The integration in equation (43a) is performed in the hodo-
graph over any curve C which begins at 7=— « and ends at
the point 7,6. The generalized coordinates X and Y at
which the same velocity 7,8 is to be found when the airfoil
is at angle of attack are given correspondingly by

X(n,6; a)—— f(2n¢adn+¢;d0) (440)
Fntje) =20 (44b)

The integration in equation (44a) is considered to be taken
over the same curve C as before.” The integral I, is now
given by

L= " wh(ro—a)dn (45)

It can be shown from equations (19), (36), and (37) that for
vanishingly small o
I.=1I, (46)

. Equations (44) can now be specialized in the light of the
basic perturbation assumption. This assumption implies
at once that the coordinates X and ¥ in the physical plane
must be expressible in the form

X(1,6;0)=X(1,6)+ X’ (n,6) (47a)
Y (2,050)=Y (,8)+ X" (n,6) (47b)
where X'(7,0)=X.(1,0;0) and Y’(n,0)=Y.(n,0;0). If ex-

pressions (19) and (47) are substituted into equations (44),
and equations (43) and (46) are taken into account, the
following relations are finally obtained for X’ and ¥’ in
terms of /:

X )= f @nW/sdn+ ) (480)
o 20
Y (0= 22— (48b)

0

711Cllessllghtlyoutsidethadommmwhlch&hdaﬁnﬂd—aswmbethecase,foremmpb,whenthemtmﬁonmtakenomtheuppersurfaceofthewedgelnitsundisphood position—

&utobethoughtotasbeingconunuedamlyﬂmnyoumdethaboundary



THEORETICAL STUDY OF THE TRANSONIC LIFT OF A DOUBLE-WEDGE PROFILE WITH DETACHED BOW WAVE bbb

The foregoing equations (48) give the initial rate of move-

ment with angle of attack of a point of fixed velocity 7,6- |

One requires for practical application, however, the rate of
change of 7 and 6 at a point of fixed location X,Y. Equations
relating the two sets of derivatives can be obtained as
follows: If 5 and 6 are regarded in the physical plane as
functions of X,Y, and a—that is, n=9(X,¥;a) and
0=0(X,Y;a)—then the corresponding total differentials are

dy=nxd X+ 1dY +n.da
d0=0xd X+0ydY +0.d

Consistent with the basic pertﬁrbation assumption, 5 and 6
can be written

(49a)
(49b)

21X, Y;0)=7(X,7)+ o' (X,T) (50a)
0(X,Y;0)=0(X,Y)+ ot (X,T) (50b)

where 7 and 6 represent the conditions at a given point X, ¥
at zero angle of attack and %’ and ¢ are defined by
7' (X, ¥) =9 (X,7;0), 0(X,7)=0.(X,Y;0). In view of equa-
tions (50), equations (49) can be written for vanishingly
small «

dn="xdX+77dY+4'de (51a)
d0=0-dX+0,dY+0'de (51b)

Similarly, from equations (47), one can write for the differ-
entials of X and Y as functions of 7, 8, and «

dX=Xdn+Xdo+X'da

dY=Ydn+Y:do0+Y"de
from which

X dn+Xodo=dX~—X"da
Y dn+ Yedd=dY—Y"de

(524)
(52b)

Solution of equations (52) for dy and d¢ and compﬁrison of
the results with the alternative expressions (51) gives finally
for 9’ and ¢

oYX XY’

"X X, (58
_TX-XY
"Xy -z, (530

These equations can be put in more directly useful form by
evaluating the derivatives of X and ¥ from equations (43)
and substituting for X’ and Y’ from equations (48). There
results finally

74% — 1 - —
7 (X,y)—'—m I:BI/GJ;(?W' sdn+y/ ,db)— 0/ :| (54a)

0T )=t | [ o adnt v d 20’ | (54b)

By means of these equations the initial rate of change of

7 and 8 at some fixed point in the physical plane can be’

calculated corresponding to any chosen location in the hodo-

graph. The coordinates at which these derivatives apply
are found from the solution at zero angle of attack by means
of equations (43). )

The foregoing equations are considerably simplified when
applied at the surface of a wedge profile. Here the boundary
condition is that ¥ is constant on a line of constant 8 (cf. eq.
(7)), with the result that P,=0. Equation (54a), for ex-
ample, can thus be written as simply

P E L= s [ Wit (69

where the upper signs pertain to the upper surface and the
lower signs to the lower surface. The corresponding rate of
change of pressure coefficient is found by differentiating
equation (4) with respect to angle of attack. If « is used
now to denote the true angle of attack (related to the previ-
ously used, normalized angle of attack by an equation like
(1b)), such differentiation then gives

(ﬁ) (21 ,
da Jomo “\7F1) W jag—12"

Here 7’ is still the derivative with respect to the normalized
angle as given by equations (54a) or (55). With the aid of
equations (5) and (13), this result can be rewritten

o0 Mreors (B2) ——2ymy @)

It can be seen from equation (55) and the symmetry prop-
erties of ¥ and / that 5’ must be of equal magnitude but
opposite sign on the upper and lower surfaces of the profile.
If the local lift coefficient is represented by Ap/q., = (Diower—
Pupper)/¢w, 1t then follows from equation (56) that

[(r+1) M. o)) I:d———(AZ%)ln0=4(2aw)”"n'(1?,+0) 67

where the notation 4’(X,4-0) indicates that the value is to
be taken on the upper surface of the profile. Substitution
from equation (55) gives finally

_4 (2 gw)lls 3
1%6(n,0u) J -

[+ 0322 ¢jope | L8P — sl 8

(59)

By means of this equation, the initial rate of growth of lift
at any chordwise station can be obtained. Since ¥ and ¢/
are both functions of the parameter 6, the generalized
quantity which appears on the left-hand side of equation
(87) is also a function of this parameter. These results are
in conformity with the rules for transonic similarity (see,
e. g., ref. 10).

METHOD OF SOLUTION

As in the previous calculations of ¢, the boundary-value
problems for ¥/, and ¢’z can be solved through the use of
finite-difference equations and relaxation techniques. A
detailed description of the general method has been given in
reference 2 and need not be repeated here. Most of “the
necessary finite-difference equations—notably the tedious
ones along the shock polar and sonic line—can be taken over
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directly from the previous work. The only equations which
need be altered are those directly influenced by the change in
boundary conditions on the upper boundary and on the
horizontal axis. The only real difficulty from this source is
encountered in the solution for y’, in the vicinity of the
shoulder (point B in fig. 6). At the shoulder itself, the
boundary conditions require & singularity in the first deriva-
tives of y’4, which means that any purely numerical treat-
ment would be of doubtful validity in the vicinity of this
point. This difficulty is overcome by subtracting out an
analytical solution of the proper singular form and then
working locally with the difference between this solution
and the desired unknown. The singular solution is obtained
from the general results of Guderley (ref. 13) and is expressed
in terms of hypergeometric functions. The details of this
and other matters regarding the numerical calculations for
the front half of the profile are given in Appendix A.

With the solution known for the front half of the profile,
the calculation of the lift on the rear half is a simple matter.
The computations are carried out in the physical plane and
are based on the characteristics net previously constructed
for the flow over the rear wedge at zero angle of attack (see,

e.g., fig. 27 of ref. 2). Starting from the known solution for

. ¥/, one first employs equations (48) to compute the initial

rate of movement of the points at which the Mach lines of
the basic characteristics net meet the sonic line. Using these
results and the known slope of the segments of the basie net,
one then proceeds stepwise along consecutive downgoing
Mach lines, calculating the initial rate of movement of suc-
cessive intersection points on each line. By application of
the proper boundary conditions at the surface of the wedge
the value of 9’ at the surface is finally determined, and from
this the initial distribution of lift is calculated. The defails
of the procedure are given in Appendix B.

RESULTS AND DISCUSSION
Calculations of the lift have been carried out, following
the methods just outlined, for the same values of 6, used in
the work at zero lift, namely, 1.3, 1.6, 2.4, and 4.2. These
values correspond, respectively (see eq. (13)), to values of

- the similarity parameter £, of 1.058, 0.921, 0.703, and 0.484.

To illustrate the results for the front wedge in the lhodo-
graph, figures 7 to 9 have been prepared showing the vari-
ation of Y4, ¥'5, aod ¢ for ,=1.85. The results for

3 For the calculation of ¢’ In this example, use was made of 236 lattice points distributed as shown for ¢ In figure 22 of reference 2, For ¥’ 1,380 points were used with a distribution appro-
priato to the altered behavior of the dependent variable.

0
7 OOO .
‘pB

\e‘o/'e

Fraure 7.—The variation of ¢’5 as a function of  and 6 for 8,=1.6(t,=0.921).
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=1.6(£5,=0.921).

Ficure 8.—The variation of ¢’4 as a function of  and 6 for 8,

y'=yl -0.5348 ¢,

v

. 2
Fiaure 9.—The variation of ¢’ as a function of » and @ for 8,

=1.8(;,=0.921).
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¥'s (fig. 7) are only slightly different from those previously
shown for ¢ in figure 23 of reference 2. As before, a rapid
(but regular) variation is apparent in the dependent varia-
ble in the vicinity of the point #=0, 8=1. The results for
¥4 (fig. 8) show a rapid variation near the point =0,
6=80,. This is a consequence of the previously mentioned
singularity in the first derivatives of ¥, at that point. The
values of ¢/ (fig. 9) are found in the present case from the
equation ¢'=y',—0.5348 ¢'5 (cf. eq. (39)). They exhibit
the same behavior as does ¥/, in the vicinity of the singular
point but differ markedly in other parts of the field. For
reference, the numerical values from which figures 7 and 8
were plotted are given in tabular form at the end of the
report.

The complete results for the lift of the profile are given in
figures 10 through 13. These results will be discussed in the
following paragraphs.

CHORDWISE DISTRIBUTION OF LIFT

Figure 10 shows the calculated lift distribution, in transonic
similarity form, for the four values of £, considered in the
present work. Also included are the results for £,=0
(8 ,=1) given by Guderley and Yoshihara in reference 8.
As can be seen, the same general features are apparent for
all values of the similarity parameter.

At the leading edge of the profile, for example, the calcu-
lated lift tends in all cases toward infinity. This physically
impossible result is, of course, well known from the Iinear
theory of airfoils at subsonic speeds. It is a result of the
obvious failure of the small-disturbance approximations to
conform with the actual phenomena in the vicinity of the

REPORT 1180—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

as the over-all lift is concerned. It may be presumed that
8 similar situation exists here.

As one proceeds rearward from the leading edge, the lift
distribution falls more or less rapidly, reaching a value of zero
directly forward of the shoulder. This latter result could have
been foreseen, since the speed on both the upper and lower
surfaces has a fixed (i. e., sonic) value at this location.
Directly to the rear of the shoulder, the lift distribution
starts anew from zero. This must obviously be the case,
since the expansion from sonic speed is, in’ Prandtl-Meyer {low,
a unique function of the local turning angle, which is the same
for both surfaces. Rearward from the shoulder the lift
increases monotonically to a relatively small, finite value
at the trailing edge.

Over the front wedge, the four curves of the present study
exhibit a uniform progression with respect to £,. The curve
of Guderley and Yoshibara, however, crosses the present
curves at several points. The reasons for this are not clear,
though it is highly unlikely that such a result eould be in fact
correct. The observed behavior may be due to some con-
sistent inaccuracy in the present numerical approach or to
the approximations introduced by Guderley and Yoshihara
in satisfying the boundary conditions for the interdependent
portion of the supersonic expansionfan. Over the rear wedge,
the present computations give virtually-a single curve for the
four values of £,. There is again, however, a small incon-
sistency with the results given by Quderley and Yoshihara,
This is as might be expected if the calculated flow over the
front wedge is in error in either case.

LIFT-CURVE SLOPE

leading edge. This local failure of the theory is known in Figure 11 shows the generalized slope of the lift curve at
the linear, subsonic case to be of little consequence insofar | zero angle of attack plotted as a function of the transonic
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F1cure 10.—Chordwise distribution of lift.
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o Present numerical analysis - Transonic small-disturbance theory
o Guderley and Yoshihara (Ref.8) —— —Linear theory
©
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Fraure 11.—Generalized lift-curve slope as a function of transonic similarity parame;cer.

similarity parameter. Results obtained on the basis of the
transonic small-disturbance theory are shown by three
golid-line curves. Each of these curves consists of two
segments separated by a gap within which the curve cannot
be defined on the basis of the available results. The upper-
most of the three curves gives the lift of the complete profile;
the other two show the division of lift between the front
and rear wedges.

The left-hand segment of each of the curves in figure 11
shows the variation of lift-curve slope over most of the
range of flight speed in which the bow wave is detached,
which is the range of primary concern in the present analy-
sis. The calculated points from which these curves were
drawn are shown in the figure. The points denoted by
squares were obtained by mechanical integration of the lift-
distribution curves of figure 10.? The circled points on the
vertical axis were located on the basis of the work of Guderley
and Yoshihara !

The right-hand segment of the curves in figure 11 shows
the variation of lift-curve slope in the range of flight speed
in which the bow wave is attached and the flow is com-
pletely supersonic. To the order of accuracy of the present
theory, this condition exists for the double-wedge profile at
zero angle of attack when £,=2'2=1.260."" Above this
value, results completely consistent with the fundamental

assumptions of the transonic small-disturbance theory can
easily be obtained by analytical methods. To this end, one
need only presume that the speed is constant on each straight-
line portion of the airfoil surface, a condition which is actually
fulfilled over most of the pertinent range of £,. The neces-
sary procedures are outlined in Appendix C. To the accu-
racy of the transonic small-disturbance theory, the results
provide an exact solution for the lift-curve slope of the front
wedge for all values of £, in the range of completely super-
sonic flow. For the rear wedge—and hence for the com-
plete profile—the solution is exact down to a limiting value
of £, somewhat greater than 1.260. Below this limit the
interaction of the shock wave from the bow and the expan-
sion fan from the shoulder influences the flow over the rear
wedge, with the result that the condition of constant speed
is not satisfied. The position of this limit is difficult to
determine exactly. As shown in Appendix C, however, it
must lie at & value of £_ less than 1.287. The curves for
the rear wedge and complete profile are thus approximate
for at least a portion of the interval from 1.287 to 1.260 and
are therefore shown dotted in this range. It can be demon-
strated that inclusion of the interaction effects in the analy-
sis would cause an increase in the computed lift for the rear

“wedge. Exact results would thus lie somewhere above the
dotted portion of the curves in figure 11.

? As In tho earller caleulationsof the drag coefficient at zero angle (ef. pp. 9and 24 of ref. 2), the integration over a small interval near the leading edge was carrled out analytically on the basis

of an asymptotic repressntation of tho solution in the hodograph plane.

1 In figure 11, as In figuroe 13 that follows, the ordinates for £, =1.058 have besn changed gsomewhat from the values given in an earlier publication (s2e footnote 1). This was done to correct

an error made In the original integration of ths lift distribution on the front wedge.

11 Attachmont of the wave takes placs at the somewhat Iower value of £ =3/(4)¥7=1.191. For 1.1901<t <1.260 the wave is attached but the flow behind it is still subsonic.

N
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The most interesting aspect of figure 11 is the behavior
of the lift in the vicinity of shock attachment. Despite
the gap in the curves in this vicinity, it is obvious that the
lift-curve slope of the complete profile must attain & maxi-
mum somewhere in the range from £,=1.058 to £,=1.287.
This is in marked—and somewhat surprising— contrast to
the previous results-for the drag coefficient at zero angle of
attack, which was found (ref. 2) to decrease monotonically
as the similarity parameter increased above zero. The peak
in the curve in the present case is accompanied by a similar
variation in the lift-curve slope of the front wedge. The
results for the rear wedge may or may not pass through a
minimum in the same range of £.,.

A determination of the exact shape of the curves in the
vicinity of shock attachment is not feasible on the basis ot
the present laborious methods. The existing curve for the
complete profile does show a maximum in the range of com-
pletely supersonic flow, but this is in the portion of the
range in which the computed curve is known to be errone-
ously low. If exact results were available for all values of
£, the maximum would undoubtedly be somewhat higher
and displaced somewhat to the left. The infinity which
appears in the slope of the curve at £,=1.260 (see Appendix
C) would probably disappear as well. The lift of the rear
wedge, which now goes to zero at £,=1.260, would pre-
sumably remasin finite throughout.

Within the transonic range itself, the curves of figure 11
show little variation for some distance above a similarity
parameter of zero. This is in accord with Guderley’s gna-
lytical study of two-dimensional flows with & free-stream
Mach number close to 1 (ref. 14). Guderley’s work shows,
in particular, that the curves of figure 11 should have zero
slope at #,=0. The figure has been drawn to coniorm
with this requirement. It appears from the present work
that, for practical purposes, Guderley’s result may be taken
as valid in the range of £, up to about 0.5. The same
result was found in reference 2 with regard to the drag
coefficient of the complete profile at zero angle of attack.

Over most of the range of completely supersonic flow, the
lift-curve slope of the complete profile exhibits the type of
variation well known from linear theory. This latter theory
gives for the lift-curve slope of all thin profiles

dcz 4

do— GL—T)™ 9

which capn be written in terms of the transonic similarity

variables as J
(DM S

(60)
The dashed curve in figure 11 is based on this equation.
There iS considerable quantitative difference between the
linear and nonlinear results for values of £, just above

1.287. As f_ increases, however, the curves given by the -

two theories appear to converge. This latter behavior is in
accord with Spreiter’s considerations (ref. 10) regarding the
basic relationship between the linear and nonlinear theories.

To put the results in more familiar form, the lift-curve
slope of the complete profile has been replotted in figure 12
as a function of Mach number for y=1.4. The results of
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Fieure 12.—Lift-curve slope as a function of Mach number for several
thickness ratios (y=1.4)

linear theory give a unique curve defined by equation (59).
The nonlinear, transonic theory provides a family of curves
with thickness ratio as a paramecter. As would be expected,
the range of Mach numbers over which the linear theory is
& poor approximation becomes smaller as the thickness ratio
is reduced. It can be reasoned, in fact, that the nonlinear
results must tend toward the results of the linear theory as
tfe—0.
CENTER OF LIFT

Figure 13 shows the chordwise position of the center of
lift (z/c); as a function of the transonic similarity parameter.
The arrangement of the figure parallels that of figure 11.
As before, the indicated points were calculated on the basis
of the lift distributions of figure 10. The curve in tho range
of completely supersonic flow (£,=1.260) was obtained by
means of the equations of Appendix C. Only results for the
complete profile are shown.

The movement of the center of lift with increasing £, is of
some interest. At £ ,=0(M,=1), the results of Guderley
and Yoshihara indicate a position about 29 percent of the
chord aft of the leading edge. As the value of £, is increased,
the center of lift first moves forward, slowly in the initial
stages and then more rapidly as the condition for shoclk
attachment is approached. In the completely supersonic
range, this trend is reversed; the center of lift then moves
aft toward the midchord location given by linear theory.
Apparently, the reversal of the direction of motion must
take place rather suddenly in the vicinity of shock attach-
ment. The limit of forward movement cannot be specified,
except to say that it must lie somewhere ahead of 25 percent
of the chord (and probably aft of the leading edge). The
dotted (i. e., inexact) portion of the curve passes precisely
through the quarter-chord point at £,=1.260. (The cor-
responding lift distribution is one of uniform lift on the front
wedge and zero lift on the rear.) Because of the interaction
effects previously discussed, an exact result would lie some-
what above the dotted curve.

CONCLUDING REMARKS

The present calculations add support to the growing con-
clusion (see refs. 2, 5, 6, 7, and 14) that no marked changes
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Fraume 13.—Center of lift as a function of transonic similarity parameter.

take place in characteristics of airfoil sections as the free-
stream Mach number passes through 1. The establishment
of this conclusion must be regarded, in fact, as one of the
major suceesses of recent research in transonic flow. In the
present case, as in the previous study of the drag coefficient
at zero lift, the variation of the aerodynamic quantities with
free-stream Mach number is most rapid in the vicinity of
shock attachment. Unlike the behavior of the drag co-
officient, however, the variations here are large and charac-
terized by a sudden reversal in the sign of the derivative.
In drawing conclusions from these results it must be remem-
bered, of course, that the theory assumes an inviscid medium
and an airfoil of small thickness and infinite span. It also
assumes, in effect, that at a given Mach number the angle of

attack is small compared with the difference between the
actual wedge angle and the wedge angle that would provide
shock attachment at zero lift, To what extent the results
will be valid for viscous flows about finite-span airfoils at
practically usable values of the thickmess ratio and angle of
attack is difficult to say. The effects of finite span, for
example, will surely cause a reduction in the variations near
shock attachment. In the present state of theoretical
development, the study of these effects is a task for experi-
ment.

Axes ABRONAUTICAL LABORATORY
NaTroNar Avvisory CoannorTsE FOR AERONATUTICS
MorrerT F1evp, Cavrr., dug. 1, 1952
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APPENDIX A

SOLUTION OF BOUNDARY-VALUE PROBLEM FOR FRONT WEDGE IN HODOGRAPH PLANE

The solution of the boundary-value problems for ¥/, and
Y5 was accomplished by finite-difference methods similar
to those developed for the calculation of yinreference2. The
description here will be limited to the few features wherein
the present work departs from that discussed in the earlier
paper. (See general remarks under METHOD OF SOLU-
TION.) The notation and sketches follow the conventions
used in reference 2.

FINITE-DIFFERENCE EQUATIONS COMMON TO BOTH PROBLEMS

The only finite-difference equations common to the prob-
lems for ¢/, and y'5 but not found in the problem for y
derive from the boundary condition on the horizontal axis
(see figs. 5 and 6). This condition is given for both problems
by equation (38) and is ¥'¢(7,0)=0 for »<—1. In the
previous work, the finite-differcnce equations for lattice
points located on a boundary were obtained by approxima-
tion to the boundary condition itself. In the present case,
the approximation to the differential equation will be
employed, and the boundary condition incorporated through
use of the equivalent symmetry property.

Consider a typical point 0 on the horizontal axis as shown
in figure 14. Point 3 is a fictitious lattice point located

Ficure 14—Point on horizontal axis.

below the horizontal axis at §=—A, where A is the lattice
interval. The finite-difference approximation to the differ-
ential equation (20) of the present text is given by equation
(37) of reference 2 as

Vot i —2n0(0 1+ ¥s) —2(1—2n0) ¢ 0=0

where 5, is the absicissa of point 0. The symmetry property
leading to the boundary condition (38) requires that ¢/';=y";,
so that for points on the horizontal axis equation (A1)
reduces to )

(A2)

(A1)

Vot i — e 1—2(1—2n0)¥/0=0

The point at the intersection of the horizontal axis and the
shock polar needs special consideration. Figure 15 shows
562
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Fiaure 15.—Point at intersection of horizontal axis and shock polar.

conditions at this point. Here, as before, point 4 is &
fictitious point located below the boundary symmetrical to
point 3. It follows from the boundary conditions (25) and
(38), both of which must be satisfied at the point 0, that the
first derivatives in the coordinate directions are both zero
at that point. On the basis of this fact, if the function
¥ (n,0) is expanded in a two-dimensional Taylor's series
about point 0, the following finite-difference relations for the
second derivatives are easily obtained:

A2¢'n|o=4ll/1—.% Wa—% Vo

A2 golo=2¢"3—2¢" 0 —E* AN 1o

Here the symmetry property about the horizontal axis has
been used to equate ¥/, to ¢’s. Substitution of these relations
into equation (20) for n=—1 leads to the following finite-
difference equation for the point 0:

4020 — (2Bt aws—] 4] (-2 | wom0 (43

FINITE-DIFFERENCE EQUATIONS SPECIAL TO ¢'s

The only finite-difference equation special to the problem
for ¢/ is the one used to terminate the field of computation
at some vertical line on the left. As in the corresponding
work for ¥, this equation is derived from an asymptotic
solution of the boundary-value problem valid for large
negative values of . The derivation is parallel to that
described in detail on page 16 of reference 2.

The boundary conditions which must be satisfied by ¥/
at large negative values of 4 are shown in figure 16. The
shaded section shows the anticipated variation of y/p for
constant 5. A solution of the differential equation which
satisfies the given boundary conditions is

11/8(7770)=§ C, cos (g%f))(ﬂ—n Ky th, (—2q 3/2]
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Fraure 16.—Boundary conditions on ¢'5 at large negative ».

where K, is the modified Bessel function of the second kind
of order 1/3 and the C, are appropriate constants. If only
the leading term of this solution is used and the Bessel
function is replaced by the first term of its asymptotic
expansion, there results

¥ 5(n,0)=C cos (;Ti X(—n)~Y4exp [._6% (_2,7)3/2]

As in the earlier work, let A denote the lattice interval and
B some large negative value of 5 such that A/f«1. It then
follows from the foregoing solution that, to a first order and

for a given value of 8,
(1-g) e (—57V%) 49

‘VB(_'ﬁ"-A’O)_
‘VB(—'B;O)

By substituting this relation into equation (A1), a finite-

difference equation can be obtained which is valid for points

on the line y=—g and does not include any points to the

left of this line (cf. eq. (39) of ref. 2).

FINITE-DIFFERENCE EQUATIONS SPECIAL TO ¢4

The only equations special to the problem for ¢/, arise as
a consequence of the condition along the upper boundary,
where the values of ', are prescribed as a function of 7.
Along most of the boundary, this condition can be met by
substituting the prescribed values directly into finite-differ-
enco equations of the type (A1) for points one interval below
the boundary. Because of the nature of the boundary values
near =0, however, some change from previous procedures
is necessary in the viciuity of the shoulder. Modification is
also required in the equations used to terminate the field on
the left. ,

Points near shoulder of wedge.—From the known behavior
of ¥ in the vicinity of the shoulder (see Guderley’s results,
ref. 13, for the flow around a convex corner), it can be shown
that the variation of ¢/, along the upper boundary near
»=0 must be of the form

V' 4 (0,00) =P (n,00) =D (—9)"*

where D is a constant of proportionality. A singular solution
of the differential equation (20) which is valid in the vicinity
of the shoulder and which satisfies the boundary condition
(A5) is also obtainable from Guderley’s results. This
solution is, in the present notation,

(A5)

Valn, 0=D—r—5F (—% 5 5-50)  @o

where F is the hypergeometric function and {=_¢(»,6) is
defined by
9 (6.,—0)*
£=g TR

Equation (A6) is suitable for use near the upper boundary
(0220,,¢220). Near the sonic line (—9e40, t&—eo) the
following alternate form is available:

Vs O=ged| =g 0= | P (55 520+

gt (535 70} @

o3 (1— gy g—)l/e
If equation (A7) is evaluated on the sonic line, there results

31/3
¥4 0, =3 DO—0) (48)

This result is in agreement with equation (32), which was
developed from other considerations. It is apparent from
equations (A5) and (A8) that a solution for ¥/, will have a
singularity in the first derivatives at the point =0, 6=6,.
Because of the foregoing singularity, a direct numerical
calculation of ¢4 might be expected to run into difficulty
in the vicinity of the shoulder. Attempts along these lines
led, in fact, to the unlikely result of negative lift over a
small region of the profile just forward of the midchord.
Reductions of the lattice interval to quite small values
served merely to decrease the extent of this region. This is
in contrast to the previous work for ¥ (and for ¢/5 as well),
in which the singulerity at the shoulder appears in the
second derivatives. In that case, a sufficiently accurate
solution for the unknown function could be obtained by
direct calculation. In the present work, it was found
necesdary to subtract out the singularity in the first deriva-
tives according to the following procedure: .
Let a function 8y« be defined such that

L WAy a4, (A9)

where ¥/, is a singular solution of the type given by equations
(A6) and (A7). If the actual, numerically determined
values of y’4 on the upper boundery are examined, it is
found that for a small length of the boundary mnear the
shoulder these values can be replaced to a good approximation
by a ¥-power variation of the form given by equation (AS5).
This is done, and the constant D is determined such that
within this length of boundary ¢'4 (u, 6x)=v'a(n, 6,) or
§¢'4=0. On this basis, a boundary-value problem for
8¢'4 can be defined for a small region near the shoulder as
shown in figure 17. The problem for sy, within this region
is solved jointly with the problem for ¢, in the remainder of
the field. The two regions are fitted together by the use of
overlapping lattices, much as is done in the case of a graded
mesh (see ref. 15). The only difference is that equation (A9)
must now be utilized to make the transition between the
two lattices at all their common points. It is seen from
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Ficure 17.—Boundary-value problem for &y/4.
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figure 17 that conditions for 8y, on both the upper boundary
and sonic line are identical to the corresponding conditions
for ¥. The finite-difference equations for the calculation of
8’4+ can therefore be taken over dlrectly from the prewous
work.

As nearly as one can judge.from experience with various
lattice spacings, results obtained by the foregoing process are
quantitatively as well as qualitatively reliable. The primary
source of error is in replacing the actual values of ¢, along
the upper boundary by a ¥-power variation., Since the re-
gion over which this is done in the hodograph corresponds to
o very small portion of the chord in the physical plane,
errors from this source are probably small.

Points far to the left.—The boundary conditions for ¢/,
at large negative values of n are shown in figure 18. From

‘#AI("],BV)—-_;?

¥ (n.8,)=¥,(n.6,)

¥y —0
for 7 —-—-o

i

¥4,(1,0)=0
8=0

Frcure 18.—Boundary conditions on y/4 at large negative 1.

the asymptotic solution for the basic problem (eq. (38) of
ref. 2), the expression for y', along the upper boundary is

found to be
exp [—3% (—27 3’*:]

(A10)

\!"A("bow) =-‘x-bﬁ(77:0w) =K ('— ’7)_1”

where E is a constant.

Because of the nature of the boundary condition (A10), it is
not possible to write an asymptotic solution for ¢, for large
negative 5 in a single term. For this reason, the procedure
used previously to terminate the field of calculation at some
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location on the left cannot be applied in the present case.
An alternative procedure, more arbitrary in nature, can be
devised by writing ¥/ in the form

"I’IA (77:0) = ‘IVA (ﬂ;ow) +6‘1VA (’7’0) (All)

where 84 is now defined by 8y'4(1,0) =¥ 4(1,0)—¥ 4(n,0,)
(see fig. 18). The attenuation of ¥4 in going from a point
at n=-—p to a point at p=—pB—A is then found by treating
each of the terms in equation (All) as an independent
quantity. The attenuation of ¢, (n,0,) is found from equa-
tion (A10) by a procedure similar to that used i m obtaining
equation (A4). The result is

w(—p—200=] (1—55) e (=52 4%8) | Wat—8.00
(A12)

To obtain a corresponding equation for &y',, it is assumed
that for a given value of 6 this quantity attenuates in the
same manner as was previously found for ¢’z. One thus
has from equation (A4)

v/ s——n09={ (1—35) o (—57 V3B [ow'u(—80)
(A13)

Substitution of these expressions in equation (Al1l) for
n=—pB—A gives finally

v s(—B—0,0~(1—5) exp (— 1 42X

([0 (—3mvB)—1] Wat—Bo+vu(—B0] (419

Since ¥’ 4(—B,0.) is & known quantity for any given value of
B, this equation can be used to terminate the field of calcula-~
tion in the same manner as was done with equation (A4).
The considerable element of arbitrariness in the derivation
of equation (Al14) can be tolerated since the over-all solution
is insensitive to changes in the left-hand portion of the field.

SOLUTION OF FINITE-DIFFERENCE EQUATIONS

The techniques used to obtain a solution of the finite-
difference equations for ¢/, and ¢'; were the same as those
described in reference 2 for the basic solution ¥. In general,
the graded lattice used for ¥ (see fig. 22 of ref. 2) was suit-
able for the solution of ¢’5. For ¢'4, however, different
gradations were necessary with the smallest lattice spacing
being used near the shoulder (point B of fig. 5). The value
of ¢/ at the intersection of the shock polar and the sonic
line was chosen as 10,000 so that the previously obtained
values of ¥ could be used to provide the initial guess for ¢'5.

In the course of the present work, a useful technique was
found for locating regions of relatively large error in the
numerical solution. By use of one form of Green’s theorem
plus the differential equation (20), it can be shown that
around any contour enclosing a region in which equation (20)
is satisfied the following relation must hold:

95 @b odn-+¥/128)=0 (A15).
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In a numerical solution the line integral in equation (A15)
will not, except by rare coincidence, be precisely zero around
any given contour. The amount by which it differs from
zero may be taken as a rough measure of the adequacy of
the numerical solution over the region within the contour.
If the entire field of calculation is subdivided into a number
of contiguous regions, it is thus possible, by evaluating the

integral around each of the enclosing contours, to locate re-
gions within which the error is relatively high. The solution
in these regions can then be improved by advancing locally
to a finer mesh. This technique was found to be of great
help in the present work. It would probably be useful in
other elliptic boundary-value problems for which a relation
analogous to equation (A15) can be obtained.

APPENDIX B

CALCULATION OF FLOW OVER REAR WEDGE IN PHYSICAL PLANE

The procedure used to calculate the flow over the rear
wedge has been outlined in the section METHOD OF
SOLUTION. The fundamental operation is to determine,
by stepwise methods, the initial rate of movement of the
known intersection points in the basic characteristics net.
The methods which are used depend on the fact that these
points are, by virtue of the basic characteristics construc-
tion, points of fixed #,8 (cf. egs. (69) and (71) of ref. 2).

The first step is to determine the initial rate of movement
of those points at which the Mach lines of' the basic charac-
teristics net meet on the sonic line. For this purpose, con-
sider equations (48), which give the initial rate of movement
of a general point of fixed 5,0. If these equations are spe-
cialized to apply to points on the sonic line, the following
relations are obtained:

oo 1[0
X0~ |2 (Bla).
Y'(o,a)=%%ﬂw (®B1b)

To write equation (Bla) the path of integration in equation
(48a) is taken along the upper boundary from O to B (see
fig. 5) and thence downward along the sonic line. The con-
tribution of the portion from O to B is zero by virtue of con-
dition (37). In applying these equations, the value of I, is
known from the basic solution. The integral in equation
(B1a) is evaluated by mechanical integration of a curve of
numerically determined derivatives. Proper allowance is
made for the singularity at the shoulder by integrating the
singular solution analytically.
movement of the sonic point at the shoulder are both seen
to be zero.

The next step in the solution is to calculate the rate of
movement of intersection points downstream of the sonic
line, This is done by proceeding stepwise along consecu-
tive downgoing characteristics.

Consider three typical net points as shown in figure 19 (cf.
also fig. 27 of ref. 2). The dashed lines represent the origi-
nal position of the Mach lines through points a, b, and ¢, and
the solid lines represent their displaced positions correspond-
ing to a small, finite angle of attack «. Since the intersection
points in the Mach net are points of fixed 5,8, the components
of their displacement are given by «X’ and «¥”’. The slope
of each segment of Mach line is taken, in accord with the
procedures of reference 2, as the average of the slopes calcu-
lated at the two end points. The slope calculated at each
end point depends, in turn, only on the value of 5 at that
point (cf. eq. (68) of ref. 2).

The component rates of -

b/
aX}

Fraure 19.—Typical points in characteristics net.

It is desired now to determine X’ and ¥’ at point ¢ in
terms of X’ and ¥’ at points @ and 4. Since the value of 3
at a given net point is the same in the displaced and undis-
placed positions, it follows from what has been said above
that each segment of Mach line must retain its original slope
after displacement. If this slope is denoted by m, the follow-
ing relations are then readily obtained:

ch= Yla—' Ylbimboglb—maoX ,a

- (B2s)
Y,c= —ﬁichIa_macY_b_l" ﬁumbo(‘le_X la) (sz)
Mps— Mge

With these relations, it is a simple matter to calculate the
initial rates of movement of successive net points on consecu-
tive downgoing characteristics. For the first characteristic to
be considered, point b is taken at the shoulder of the profile,
where X’ and Y’ are both zero. Thus, X’, and Y, for net
points on this characteristic can be determined solely in
terms of X’, and Y/, and the slopes m,. and m,.. For the
remainder of the downgoing characteristics, X’, and ¥, are
known from calculations along the characteristic immediately
preceding. The actual calculations can be carried out in
straightforward tabular form.

The foregoing procedure enables the calculation of X’ and
Y for all net points except the ones originally at the surface
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of the rear wedge. For these points, consideration must be
given to the required boundary condition at the surface.
This boundary condition is

G(X:+O;a)=_(0w+a) CB3)
from which it follows that
6 (X,+0)=—1 (B4)

The problem now is to determine X’ and ¥’ at the surface
of the wedge in such a way that equation (B4) is satisfied.

To do this equation (53b) is first specialized to the surface

of the wedge, where it is readily shown that Xp=Y,=0. In
view of condition (B4), there results

Y’ (n,—00) =Y o(n,— ) ®B5)

The value of Y’ at points originally on the surface of the
wedge is thus fixed directly by the basic solution. The cor-
responding value of X’ can be found from a construction
analogous to that of figure 19 and is

Y/ —Y  —MeeX'a

_mu

X'e= (BG)

The point ¢ is now the point originally on the surface of the
wedge (i. e., Y7, is as given by equation (B5)), and the re-
maining notation is the same as in figure 19.

Application of equation (B5) requires the knowledge of
Yo(n,—0,), which in the case of the wedge profile is equal
t0 1/8y. Evaluation of the latter derivative can be carried
out directly from the basic Mach net, but the procedures are
cumbersome and inaccurate. A better method is to use the
equations of motion (cf. eq. (6) of ref. 3) to express by in
terms of 7x. Following this procedure, one obteins finally

(20,18
27(X,0) 7x(X,+0)

The quantities 7 and 7 which appear here are easily eval-
uated from the basic solution for the chordwise distribution
of 7.

The preceding equations enable the calculation of the initial
rate of movement X’ for points originally on the surface of
the rear wedge. The final step is to determine the cor-
responding distribution of lift. For this purpose, equation
(53a) is specialized to points on the rear wedge to obtain

7 (X, +0)=—X"(n,~6.)/Xz,@,— )

which, in view of the boundary conditions, can be shown to
be equivalent to

7' (X, +0)=—X" (n,—0s) 7x(X,+0) (B8)
The distribution of lift is then obtained from equation (57).

Y9 (’7; - aw) (B7)

APPENDIX C

SOLUTION OF PROBLEM FOR COMPLETELY SUPERSONIC FLOW

CALCULATION OF LIFT-CURVE SLOPE AND
CENTER OF LIFT

If conditions are such that £, =2"3=1.260 (corresponding
to 8, 1; cf. eq. (13)), then the basic flow over the profile at
zero angle of attack is completely supersonic. The solution
for the lift-curve slope and center of lift at a vanishingly small
angle of attack can then be carried out analytically as follows:

~—Prandtl-Meyer
/ expansion

Shock wave—_ / / /

Consider a completely supersonic flow about the double-
wedge profile at a small angle of attack. In the physical
plane the flow field has the well-known appearance shown on
the left in figure 20. The corresponding hodograph of the
flow along the upper surface, in terms of the normalized
small-disturbance variables # and 6, is shown. on the right.
The quantities 6,, and « are, as before, the half-angle of the

8

* ,~—Shock polar

! \

92"9” -a \2

Fraure 20.—Conditions on airfoil in conipletely supersonic flow.
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wedge and the angle of attack (also normalized). Except
for a small range of £, just above 1.260 (see below), flow
conditions must be constant along each of the segments 1
and 2 of the upper surface. In the hodograph each of these
segments is thus represented by a single point located as
shown. It is apparent that for a given value of 6, the
speeds 7, and u,;, which are the primary unknowns in the
problem, are functions solely of the angle of attack a.

To find the lift-curve slope and center of lift it is necessary
first to find the derivatives 5'1=(dm/da)amo and 75’3=
(dn2/da) emo. This can be done with the aid of the equations
for the shock polar

f=1—n 142 Cy)
and for the downgoing characteristic **
2%/3
0=constant——3— ik (C2

To find %'y, one must utilize the boundary condition

6;=0,—«a. Substitution of this condition into equation
(C1) provides the following implicit equation for »;:
fp—a= (1'f'ﬂl) V1+m (C3)
Differentiation of this equation gives
da 1+3171
dn 2 Yi+m
From this it follows that
r_2414m

where, as in the main text, the bars denote the value of
m at @=0. The value of 7; can be found in terms of the
parameter 6, by solving equation (C3) for n, with « set
equal to zero. The result, obtained through standard
methods for the solution of cubic equations, is

- +3/2 6,
nn=— 30+1

= 11'—-90

(C9)

2 cos

arosen (320

To find »'y, equation (C2) for the downgoing character-
istic is first specialized so as to pass through the point 1.
This gives

where

o2
0=0,—c) +5- (=%

Substitution of the boundary condition fy=—~0,—« then

provides the result that

3[2+ 3 0 2/3
’72'—(771 .JE w)

12 Compare equation (67) of reference 2,
308665—066——37

56

Taking the derivative with respect to @, one obtains finally
at a=—=0

- 112
7],2 (— o 0 )1/3 77 1 (06)
m +——

where 7', is given by equation (C4) and 7; by equation (C5).

Since the value of 7’ i3 constant on each segment of the
profile, the lift-curve slope is easily found from equation
(57) and is

(DM (G2) =200+

Substitution from equation (C6) gives

[(’Y+1)Mm2(t/c)]1/3(%> —=2(20,)"%y/; l:l +( - ;7'11/2 )m:l
= g,
7).
(&)

The moment-curve slope, for moments taken about the
leading edge, is found to be

(DM (52) =~ ottict-3e)

or

[+ DM (%)=

3771

ger]

sy, [

The position of the center of lift is given accordingly by
. ! 14 3;7.11/2

(lenfd@)oms "1, T GBI

(dcl/da)ano 4 1 1 .7_7'11/2

x
G-
(7124 (3/v/2)0.]

In equations (C7) and (C8), the first term inside the brackets
represents the contribution of the front wedge, the second
term that of the rear.

Equations (C7) and (C9) are the basis for the curves
shown in figures 11 and 13 for values of £_=1.260. The
results show certain curious features when the flow over the
front wedge is just somic (i. e., 7:=0, 6,=1, £,=1.260).
These are as follows:

(&) The lift contributed by t.he rear wedge is zero (see
eq. (C7)). ,

(b) The center of lift is at the quarter-chord point (follows
from statement (a) plus the condition of uniform lift on the
‘front wedge; see also eq. (C9)).

(¢) The rate of change with respect to £_ is infinite both
for the lift-curve slope of the complete profile and for the
position of the center of lift (follows from differentiation of

(C9)
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eqs. (C7) and (C9)). These results are associated in every
case with the behavior of the lift calculated for the rear
wedge.
ESTIMATION OF LOWER LIMIT FOR CONSTANT SPEED
ALONG REAR WEDGE

The features just enumerated, though having a certain
curiosity in themselves, cannot be accepted as completely
correct. Because of interaction effects between the shock
wave from the bow and the expansion fon from the shoulder,
the fundamental condition of constant-speed at the surface
of the profile will not be satisfied along the rear wedge until
the value of £, is somewhat greater than 1.260. TUntil then,
disturbances reflected from the shock wave will reach the
rear wedge and cause a slight decrease in speed toward the
trailing edge. This effect will cease when the forwardmost
reflected Mach wave just touches the trailing edge. The
exact value of £, at which this condition will be met is
difficult to determine. An upper bound can, however, be
estimated as follows: B

Consider the basic flow field (e=0) over the upper half of
the profile when the first reflected Mach wave just strikes
the trailing edge. Figure 21 shows such a flow field as it
would appear in transonic similarity form (ef. pp. 56 of ref.
2). In drawiog the figure a special assumption has been

Shock wave—-—.

First Mach wave ___
of expansion fan

Assumed location
“~-—of first reflected
Mach wave

) /2 34 |
xfe -
Figure 21.—Mach-line pattern assumed to exist when first reflected
Mach wave strikes trailing edge.

introduced beyond those implicit in the small-disturbance
theory; namely, that the first reflected Mach wave is straight
and has an angle of inclination u equal to that of the first
wave in the expansion fan. With this assumption, the gor-
responding value of £, is easily determined. Since the
reflected wave must actually be curved downstream, the
value so determined will be greater thau the correct value
for the required condition.

On the basis of figure 21, the following equation can be
written between the shock angle X and the Mach angle u:

tan )\=§tan 43 (C].O)

A relation between the shock angle ) and the speed % .in;the
region behind the shock can be obtained from equation (GB) \
and the known properties of the shock polar. The regizifis
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tan )\=———(20“’)
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An analogous expression for the Mach angle u is given by
equation (68) of reference 2 and is

(2‘8w)1/3
V2

Substitution of these relations into equation (C10) and
solution for 7, gives

tan pu==

’71=1—7

The accompanying value of 6,, found from equation (C3)
with ¢=0, is
0,,=0.9685

This corresponds, according to equation (13), to

£.=1.287 (O11)

Thus, for values of £, between 1.260 and some limit less
than 1.287, the results of equations (C7), (C8), and (C9) are
not exact insofar as the contribution of the rear wedge is
concerned. It can be reasoned that in this range an exact
solution would indicate more lift for the rear wedge than
does the present analysis.-
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